Según Wikipedia El cálculo integral, encuadrado en el cálculo
infinitesimal, es una rama de las matemáticas en el proceso de
integración o antiderivación, es muy común en la ingeniería, economía y
en la matemática en general y se utiliza principalmente para el cálculo
de áreas y volúmenes de regiones y sólidos de revolución. Fue usado por
primera vez por científicos como Arquímedes, René Descartes, Isaac
Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y
los aportes de Newton generaron el teorema fundamental del cálculo
integral, que propone que la derivación y la integración son procesos
inversos. Ejemplo: Integración por sustitución
Para ver los ejercicios del método de Integración por partes Clic acá-
Sidamat
Software interactivo para el aprendizaje de las matemáticas
-
Edublog
Acá encontrarás noticias e información relacionada con las matemáticas y el mundo real.
-
MathClubVirtual
Red de docentes y estudiantes apasionados por las matemáticas
-
Docente de secundaria
En Institución Educativa Exalumnas de la Presentación Ibagué Col
-
Matemàticas y Tic
Uso de Excel para el aprendizaje de la estadística
La fórmula de Google es uno de los secretos mejor guardados en Internet
Móviles, ordenadores, redes sociales... nos movemos constantemente entre operaciones matemáticas. Una ciencia que encierra todavía algunos curiosos secretos como el algoritmo que calcula las búsquedas de Google.
Inspiración, creación e intuición. Son algunos de los ingredientes de las matemáticas, esa ciencia que nos acompaña en nuestro día a día, ya sea en el uso del móvil o cuando nos conectamos a Internet para chatear con los amigos. Una ciencia que sigue planteando retos a los investigadores, como los "Problemas del milenio", cuya resolución sería premiada, según anunció el Clay Mathematics Institute en el año 2000, con la suma de un millón de dólares cada uno (y a día de hoy, únicamente uno de estos problemas ha sido resuelto). Las matemáticas, una ciencia de la que dependemos sin duda para el desarrollo y evolución de las nuevas tecnologías.
A continuación, la entrevista a Carlos José Navas. Profesor de Finanzas de la UMH y miembro de la Real Sociedad
Matemática Española por parte de un periódico de La Provincia de Alicante (España).
¿Tiene Google una fórmula secreta como la Coca-Cola?
Todos los que usamos Google (que somos la práctica totalidad de los internautas) sabemos lo importante que es aparecer entre las primeras posiciones al realizar la búsqueda. La forma en la que Google determina qué enlace debe aparecer antes de otro es mediante una familia de algoritmos llamada PageRank, que fue la gran aportación de la Tesis Doctoral de los fundadores de Google, Larry Page y Sergey Brin, en la Universidad de Stanford. Simplificado, PageRank funciona como un índice de popularidad basado en enlaces: cuantos más enlaces tiene una página desde otras, mayor es su "PageRank". El argoritmo original es conocido (puede verse por ejemplo en http://es.wikipedia.org/wiki/PageRank), pero el que funciona en la actualidad sí, es un secreto como el de la Coca-Cola y uno de los mejor guardados en Internet. Google lo modifica cada cierto tiempo para hacer frente a los intentos de manipular los resultados (la última actualización fue en enero de este año: 2011).
¿Y hasta qué punto dependemos de las matemáticas con las nuevas tecnologías?
¿Ocurre de igual modo cuando utilizamos el teléfono móvil?
Sí y son fundamentales. Por poner un simple ejemplo: al realizar una llamada, el teléfono lo que hace es enviar una señal electrónica que transmite una versión digitalizada de lo que estamos diciendo. Para esta trasmisión es fundamental dos cosas: comprimir los datos, para que lleguen de forma casi inmediata al receptor, y corregir los posibles errores, para que lo que llegue sea realmente lo que decimos. Pues bien, ambas labores se basan en algoritmos matemáticos.
¿Es tan difícil de adquirir, aprender o dominar un lenguaje de programación para el ordenador? ¿Hay uno o muchos como ocurre con los idiomas?
Hay muchos, y con la explosión de la web por un lado y de los dispositivos móviles por otro muchos desarrolladores están aprendiendo nuevos lenguajes para adentrarse en esos mercados. Yo confieso que es uno de mis retos pendientes.
¿Qué problemas obsesionan en estos momentos al mundo matemático? ¿Son los seis "Problemas del milenio" como señalan algunos expertos?
Los seis siguen estando ahí, desde luego, pero no creo que sean una obsesión más que para aquellas personas que hayan decidido dedicarse a tratar de encontrarles solución. Es en la matemática aplicada, por ejemplo, en cómo afrontar un problema que jamás se había dado hasta hace 30 años que es el disponer de una cantidad masiva de datos e información y cómo tratarla, donde yo veo más campo para el estudio y que surjan cosas nuevas.
¿Están los jóvenes cada vez más distantes de las matemáticas? ¿Hay curiosidad por los retos difíciles?
Siempre que surge la pregunta sobre los jóvenes, yo recuerdo que alguien me dijo que un viejo profesor que se quejaba de que las nuevas generaciones estaban echadas a perder... y que ese viejo profesor era Aristóteles... no sé si será cierta, pero, se "non è vero, è ben trovato". La revolución de Internet está encabezada por programadores con un dominio excelente de las matemáticas.
¿Depende de las matemáticas el futuro de Internet?
Sí, sin duda. Las soluciones a los problemas de almacenamiento de datos, de velocidades de conexión, de ampliar las posibilidades de la red... todos, en su esencia, son problemas matemáticos. También ocurre con los videojuegos y la fotografía que, como la astronomía, tiene una base puramente matemática, tanto la óptica como la digital.
Tomado de www.diarioinformacion.com
Niño de trece años puede revolucionar la energía solar
El adolescente ha aplicado un famoso modelo matemático del siglo XIII y se ha inspirado en la disposición de las hojas de los árboles para cambiar la orientación de las células fotovoltaicas
El niño Aidan Dwyer ha conseguido aumentar hasta en un 50% el redimiento de las células fotovoltaicas |
Algunos descubrimientos trascendentales para la ciencia tienen lugar de forma casual. Quizás la historia de Newton, la manzana que cae y el descubrimiento de la forma en que funciona la gravedad sea apócrifa, pero el descubrimiento de Aidan Dwyer es
absolutamente real.
Este estudiante de solo 13 años de edad, paseando
por un bosque, descubrió que si se orientan las celdas fotovoltaicas
respecto del Sol de una determinada manera, su rendimiento puede mejorar
entre un 20% y 50%. Parece que la disposición de las ramas de los árboles, relacionada con la serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa (también conocido como Fibonacci) no es causal, y permite maximizar el aprovechamiento de la energía solar.
Hay
historias relacionadas con la ciencia que parecen extraídas del
argumento de una buena novela, y esta es una de ellas. Un joven
estudiante estadounidense de séptimo grado llamado Aidan Dwyer estaba
dando un paseo por los bosques de las Catskill Mountains, al norte del
estado de Nueva York, cuando notó que las ramas desnudas de los árboles no estaban orientadas al azar.
Esto es algo que generalmente pasa desapercibido para el 99% de las
personas, y seguramente para prácticamente todos los niños. Pero Aidan
lo notó, y después de investigar un poco “descubrió” algo de lo que ya
se ha hablado en NeoTeo: la pauta de distribución de las hojas en las ramas y de las ramas en el tronco de muchos árboles siguen la denominada Sucesión de Fibonacci, una serie de números descrita en el siglo XIII por el matemático italiano Leonardo de Pisa.
En efecto, desde hace mucho se sabe que la naturaleza utiliza con frecuencia esta serie de números en sus “diseños”, en la que cada término es la suma de los dos anteriores
(1, 1, 2, 3, 5, 8, 13, 21, 34... o Fn = Fn-1 + Fn-2). Desde la
distribución de las hojas de una lechuga hasta el número de conejos que
podemos esperar tener después de una determinada cantidad de
generaciones, pasando por número de individuos existente en cada
generación de ancestros de un zángano, pueden explicarse a partir de
esta serie. Pero esto es algo que la mayoría de los niños de 13 años
suelen ignorar.
Aidan
Dwyer lo notó, y tuvo la genial idea de relacionar este hecho con la
“dependencia” de la energía solar que tienen los árboles. Puso manos a
la obra, y construyó dos pequeños captadores solares compuestos por un puñado de células fotovoltaicas
para ver si la forma en que las ramas crecían en los árboles tenía
realmente alguna influencia en la cantidad de luz que cada hoja recibía.
Uno de los modelos agrupaba los pequeños paneles siguiendo una
distribución plana, igual a la que normalmente utilizamos para acomodar
las células sobre cualquier techo. El segundo reproducía el patrón que
el niño había observado en las ramas de los árboles.
Crean un 'software' que analiza y simula el comportamiento de las corrientes de agua
El grupo de investigación 'Modelado Matemático y Simulación de Sistemas Medioambientales' del Departamento de Ecuaciones Diferenciales y Análisis Numérico de la Universidad de Sevilla (US) han desarrollado un 'software' de simulación matemática que predice el comportamiento de los flujos ambientales, especialmente de corrientes de agua, caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y dispersión de contaminantes en la atmósfera en el entorno andaluz.
El estudio se desarrolla a través de la aplicación 'FreeFem++3D', ecuación tridimensional que "modela" diversos problemas existentes en áreas como la física, la ingeniería, las ciencias de la salud o la economía. "Es un sistema que permite programar, mediante operaciones matemáticas, cualquier tipo de simulación, como las presentes en interacciones de los flujos de aire y sangre o la interacción aire-atmósfera", matiza el experto.
En concreto, el proyecto 'Freefem++3D: Aplicaciones a la simulación de flujos ambientales' ya se ha aplicado en el estudio del Embalse del Gergal y en el Estrecho de Gibraltar. En el primero, el calor del verano y el frío del invierno provocan un fenómeno ambiental llamado ciclo estacional de estratificación-desestratificación, que permite a los expertos realizar diversos análisis ecológicos para de optimizar los recursos naturales que ofrece la balsa sevillana, según señala. "En ocasiones, pueden darse inversiones de agua entre el fondo y la superficie, es decir, intercambios en el embalse producidos por el viento, que hacen que las sustancias potencialmente contaminantes del fondo ocupen la superficie y puedan ser explotados", apunta el investigador principal, Tomás Chacón Rebollo. En el caso del Estrecho de Gibraltar, este modelo informático ayuda a entender la compleja dinámica que existe entre el Océano Atlántico y el Mar Mediterráneo.
"Nuestro simulador ayuda a comprender la ecología de la zona, así como el clima. En este sentido, el flujo del Estrecho está generado por dos mareas de diferente densidad que provocan una compleja interacción entre ambas", sostiene Chacón.
De esta forma, Esta herramienta ayuda a entender el clima o la flora y fauna de la zona al reproducir el movimiento del agua, además de su velocidad, presión y salinidad. Así, explica que se analizará cómo el Océano Atlántico, de menor densidad, "rellena el Mar Mediterráneo en la superficie; mientras que éste rellena el anterior en el fondo". "La entrada de agua mediterránea en el Atlántico se puede visualizar como una gran cascada", añade.
Este modelo, caracterizado por ser "preciso y riguroso en sus cálculos", se utiliza para analizar las diversas corrientes de aguas naturales o inducidas por el hombre y es capaz de simular, por ejemplo, el caudal de los ríos, inundaciones, deslizamientos de tierra o el transporte y la dispersión de contaminantes en la atmósfera. Esta aplicación, que se podrá descargar de forma gratuita desde la red, permite determinar, de una manera predictiva, cuál puede ser el alcance de una inundación provocada, por ejemplo, por un río.
"Con esta aplicación impedimos que se levanten zonas residenciales en entornos peligrosos para la sociedad. Es decir, diagnosticamos, desde un punto de vista del riesgo, la distancia óptima a la que construir las infraestructuras, siempre en función de la reproducción matemática de un desbordamiento virtual", explica el investigador.
Tomado de www.europapress.es
Hormigas Optimizadoras
Laberinto utilizado con caminos de hormigas. |
Las colonias de hormigas son capaces de resolver dinámicamente, y de manera óptima, problemas como encontrar el camino más corto entre dos puntos dentro de un laberinto.
Muchas de las ideas que encontramos en ciencias de la computación han sido inspiradas por la Naturaleza. Así por ejemplo existen los algoritmos genéticos, que se basan en cierta idea de darwinismo para encontrar soluciones a ciertos problemas, sobre todo cuando queremos encontrar el mínimo de energía absoluto en un sistema en el que otros métodos caen en mínimos de energía locales de los que no salen. Existe también el método del enjambre (inspirado en la inteligencia colectiva de un enjambre de abejas) e incluso se pueden encontrar soluciones satisfactorias (aunque no necesariamente la mejor solución posible) al problema del viajante si nos inspiramos en las hormigas. De hecho hay un algoritmo denominado Ant Colony Optimisation (ACO) que se basa en el comportamiento de estos pequeños animales.
La pregunta es si se puede usar directamente a los animales sociales para resolver este tipo de problemas sin pasar por un ordenador y ver así las diferencias. Según han demostrado unos investigadores de la Universidad de Sydney eso mismo no sólo es posible, sino que han podido comprobar que las hormigas logran resolver un equivalente al problema de la torre de Hanoi sin demasiadas dificultades incluso cuando cambian las condiciones a mitad de juego.
La torre de Hanoi, en su versión más simple, consiste en tres barras
verticales y tres discos agujereados por el centro de distintos
tamaños. Se comienza con los tres discos apilados de mayor a menor (de
abajo a arriba) en una de las barras y hay que moverlos a otra barra
bajo ciertas restricciones en el menor número de movimientos posibles.
Las reglas son que hay que mover los discos de uno en uno y que en
ningún momento un disco esté sobre otro de menor tamaño.
Este tipo de problemas de tratar de encontrar caminos más cortos en un grafo son típicos problemas de la matemática computacional. Para algunos de esos problemas tenemos algoritmos (Kruskal, Prim, Fleury, Dijkstra…) que nos dan la solución óptima en tiempo polinómico. Para otros problemas, como el problema del viajante o el de la mochila, al tratarse de problemas NP, no tenemos algoritmos que nos den eso mismo, sino algoritmos que nos dan una buena (o mala) aproximación en un tiempo polinómico. En estos últimos casos, si queremos tener seguro la solución óptima, no nos queda más remedio que enumerar por fuerza bruta todos los casos posibles y escoger el mejor, algo que tiene un coste computacional exponencial.
Encontrar el camino más eficiente a través de una red saturada es un desafío común en conductores, ingenieros y compañías telefónicas. Todos estos problemas se encuadran en lo que podemos denominar problemas de optimización y no hace falta decir que estos problemas tienen grandes implicaciones económicas. La optimización permite a una empresa de transportes ahorrar mucho dinero en combustible y una factoría puede producir más si los procesos de montaje están optimizados. Hay muchos problemas logísticos en el que se tiene que maximizar la eficiencia.
Por tanto, si encontramos pistas sobre cómo solucionar un problema de este tipo en la Naturaleza, aunque ya esté solucionado algorítmicamente, quizás lo podamos aplicar a otros casos que son especialmente duros computacionalmente.
Se sabe muy bien cómo solucionar el problema de la torre de Hanoi. Saber cómo se hace algorítmicamente forma parte del programa de estudios de las escuelas de ingeniería informática. Pero las hormigas quizás nos inspiren nuevos métodos algorítmicos para resolver otros problemas.
Quizás pensando en esto último, o simplemente en la diversión, Chris Reid, Madeleine Beekman y David Sumpter (éste de la Universidad de Upsala) pusieron a una colonia de hormigas argentinas (Linepithema humile) a resolver un problema de optimización dinámica de encontrar la ruta mejor en un laberinto.
Las hormigas son capaces de solucionar el problema aunque son sean seres muy simples. La “inteligencia colectiva” que emerge de ellas es suficiente para resolver el problema, aunque cada una de ellas, individualmente, sea incapaz de hacerlo. Recordemos que las hormigas crean caminos a través de unas señales de feromonas que van dejando en el suelo, reforzándose o debilitándose según el tráfico que haya, entre otros factores.
Aunque los algoritmos inspirados en la Naturaleza de los que hemos hablado antes funcionan satisfactoriamente, no necesariamente representan el mundo real de, por ejemplo, las hormigas. En general estos algoritmos son estáticos y están diseñados para resolver un tipo de problema en concreto. Los autores del estudio se plantearon cómo las hormigas reales podrían resolver un problema de optimización y cómo responderían a los cambios. Se preguntaban si sólo podían proporcionar una solución única fija o si se adaptarían a los cambios introducidos a mitad del juego.
En el laberinto equivalente al problema de la torre de Hanoi, las hormigas tenían que encontrar en camino más corto, de los 32768 caminos posibles entre un punto de entrada y otro en el que se colocaba una comida tentadora. Básicamente era un problema tipo Dijkstra en el que el peso de las aristas del grafo eran las longitudes de los segmentos del laberinto.
Al cabo de una hora las hormigas encontraron los dos caminos más cortos que representaban las dos posibles soluciones óptimas al problema. Estas soluciones eran las que más tráfico de hormigas contenían. Entonces los investigadores bloquearon algunos caminos y abrieron nuevas áreas del laberinto a las hormigas para ver si tenían la capacidad de resolver dinámicamente el problema.
Como hemos dicho, al cabo de una hora las hormigas encontraban el camino más corto, que en un caso bordeaba el borde del laberinto. Al bloquearlo las hormigas respondieron mediante una modificación del camino original, solución que no era óptima. Sin embargo, al cabo de otra hora ya habían encontrado la ruta óptima a través del centro del laberinto.
Los investigadores descubrieron que si se permitía a las hormigas exploradoras recorrer el laberinto sin comida durante una hora antes del experimento entonces el resto cometía menos errores y eran más rápidas que cuando se enfrentaban al problema por primera vez sin exploración previa. Esto, según sugieren los investigadores, sería debido a que la feromona dejada por las exploradoras era clave para ayudar a la resolución del problema cuando cambiaban las condiciones.
Contrariamente a lo que se creía, el uso de las feromonas no afianza o consolida a las hormigas en un camino en particular sin poder adaptase a las nuevas circunstancia. Según los investigadores tener al menos dos feromonas separadas les da a las hormigas mayor flexibilidad y les ayuda a encontrar buenas soluciones incluso si las condiciones ambientales cambian.
Añaden que descubrir cómo las hormigas son capaces de resolver dinámicamente problemas puede proporcionar inspiración para nuevos algoritmos de optimización, y que éstos pueden permitir la creación de software que resuelva mejor problemas de optimización en la industria.
Tomado de Neofronteras artículo original en http://neofronteras.com/?p=3330
Reto matemático Semestre A 2011
Este semestre el reto matemático para mis estudiantes en la última semana del tercer corte consiste en:
He hecho con las letras del abecedario tres conjuntos:
He hecho con las letras del abecedario tres conjuntos:
1º : {C,
E, F, G, H, I, J, K, L, M, N, Ñ, S, T, U, W, X, Y, Z}
2º : {A,
D, O, P, Q, R}
3º : {B}
¿por qué los he ordenado asi? Es decir, encontrar la característica común de los elementos de cada uno de los conjuntos
Anímense
a participar, reconocimiento especial para quien comente de primero y
de la manera más sencilla la respuesta a este problema abierto
Pueden consultar el reto del semestre pasado acá
Pueden consultar el reto del semestre pasado acá
Criptografía
La criptografía, la ciencia que estudia cómo hacer un mensaje que
resulte indescifrable para terceros, parece cosa de novelas de espionaje
o tesoros enterrados. Sin embargo, todos nosotros recurrimos a la
criptografía cuando hacemos una compra por Internet o enviamos un
mensaje por telefonía celular. Y es, probablemente, la rama de las
matemáticas que más provecho ha dado en los últimos años.
Sherlock Holmes emplea el mismo método para resolver una clave similar en “La aventura de los bailarines”. Aquí cada letra se reemplaza por la figura de un hombrecito bailando y a cada letra le corresponde una posición diferente. Como Legrand, Holmes asocia la letra “e” a la figura más repetida. Curiosamente, para Poe, el orden de las letras en inglés, según su frecuencia, es E, A, O, I, D, H, N, R, S, T... mientras que para Holmes es E, T, A, O, I, N, S, H, R, D y L.
Mucho más sencilla es la clave que el profesor Lidenbrock (en realidad, su sobrino) descifra en Viaje al centro de la Tierra: el autor del mensaje simplemente lo escribe al revés.
Estas claves “de desplazamiento” son muy fáciles de descifrar: una vez identificada una letra, quedan determinadas todas las demás. Además, para un alfabeto de veintisiete letras hay sólo veintiséis desplazamientos posibles y una computadora podría analizarlas a todas en segundos.
El método de desplazamiento se puede perfeccionar recurriendo a un número. Por ejemplo, 4239. Este número indica que la primera letra del mensaje se reemplaza por la que está cuatro lugares más allá en el abecedario. La segunda, por la que está dos lugares más allá. La tercera, por la que está tres lugares más allá y la cuarta, por la que está nueve lugares más allá. El ciclo se repite a partir de la quinta letra. Este sistema es más seguro porque una misma letra se reemplaza por una distinta según su posición en el texto y no sirve el análisis de frecuencia empleado por el personaje de Poe o por Sherlock Holmes. Lewis Carroll, el autor de Alicia en el País de las Maravillas, publicó una vez una tabla de doble entrada para aplicar rápidamente la clave de desplazamiento.
Durante la Segunda Guerra Mundial, el ejército alemán desarrolló una máquina encriptadora llamada Enigma, de gran complejidad y que producía mensajes secretos casi imposibles de descifrar. Para mayor seguridad, las claves se cambiaban varias veces al día. Un tipo de mensajes que preocupaba especialmente a los aliados eran los que informaban la posición de los submarinos alemanes que hundían los barcos que llevaban suministros a través del Atlántico. Fue gracias a los trabajos de Alan Turing que los ingleses lograron descubrir cómo funcionaba la máquina Enigma y descifrar los mensajes enemigos. Los alemanes estaban tan seguros de la inviolabilidad de sus mensajes que atribuyeron esto a la labor de espías.
El ejército de Estados Unidos, mientras tanto, desarrolló un lenguaje secreto basado en el idioma de los indios navajos. El idioma navajo no tenía forma escrita, por lo que había pocos registros de su estructura, fuera de Estados Unidos. El código usaba algunas palabras traducidas directamente del navajo, otras veces empleaba metáforas (por ejemplo, nombres de pájaros para aviones o de peces para barcos) y también incluía palabras armadas mediante fonética. Por ejemplo, el verbo belong (pertenecer) se armaba con las palabras navajas para bee (abeja) y long (largo).
Esta clave no empleaba sustitución de letras, no se basaba en un algoritmo matemático, ni necesitaba máquinas complejas para encriptar y descifrar. Cada regimiento, cada batallón, incluía un indio navajo responsable de las comunicaciones que traducía casi instantáneamente los mensajes transmitidos.
El código fue vital para el avance de las tropas norteamericanas en el Pacífico. La historia del código navajo fue llevada al cine en 2002 en la película Código de guerra (Windtalkers), con Nicolas Cage en el papel del oficial que debía acompañar al indio. Su misión era protegerlo pero, también, matarlo ante el riesgo de caer prisionero: el código era más valioso que la vida de un soldado. También se menciona el código navajo en “Anasazi”, uno de los episodios de los Expedientes X.
Pero, en 1975, los matemáticos Ronald Rivest, Adi Shamir y Leonard Adleman crearon un sistema de encriptación completamente nuevo que asegura la confidencialidad gracias al uso de claves distintas para encriptar y desencriptar. El sistema se conoce como RSA por las iniciales de sus creadores.
Por ejemplo, supongamos que un banco necesita que sus clientes se comuniquen con una sucursal. Por supuesto, los clientes quieren que sus mensajes sean confidenciales, que nadie que no sea el banco pueda leerlos. Para eso, el banco dispone de dos claves. Una es pública, la conoce todo el mundo. El banco la puede anunciar en su publicidad, en su página web o comunicarla a sus clientes en el momento de abrir la cuenta. Esta clave la usan los clientes para encriptar sus mensajes. La otra es privada, sólo la conoce el banco y la usa para desencriptar los mensajes. Como las claves son distintas, eso asegura la confidencialidad. Aunque un mensaje sea interceptado por un tercero, que conoce la clave usada para encriptar (porque es pública), éste no podrá desencriptarlo porque no tiene la clave privada, que sólo la conoce el banco. A diferencia de los sistemas tradicionales, los participantes de la comunicación no necesitan acordar secretamente las claves. El sistema se compara a veces con un buzón en el que cualquiera puede meter un mensaje, pero sólo el que tiene la llave puede abrirlo y leer los mensajes que contiene.
Esta asimetría (claves distintas para encriptar y para desencriptar) es lo que garantiza el secreto. Sin embargo, el sistema es simétrico en otro sentido: un mensaje encriptado con la clave pública debe ser desencriptado con la clave privada. Y, viceversa, un mensaje encriptado con la clave privada debe ser desencriptado con la clave pública. Y esto tiene otra ventaja: si el cliente recibe un mensaje que, para leerlo, debe ser desencriptado con la clave pública, eso indica que fue encriptado con la clave privada. El mensaje no es secreto porque todos conocen la clave pública. Pero como la clave privada sólo la conoce el banco, eso garantiza el origen del mensaje. Si se desea garantizar el origen del mensaje y, además, su privacidad, se puede usar una doble encriptación.
El método RSA comienza transformando el mensaje en un número muy largo. Por ejemplo, se reemplaza la letra A por el número 01, la B por el 02 y así sucesivamente. Luego se hace la encriptación propiamente dicha mediante un par de operaciones matemáticas. Estas operaciones no son complejas en sí mismas pero, como involucran cientos de dígitos, son imposibles de realizar sin computadora.
Aunque la clave pública y la privada son distintas, eso no significa que sean cualesquiera. En realidad, las dos claves están directamente relacionadas y, conociendo la clave pública, es teóricamente posible calcular la privada. Teóricamente. En la práctica llevaría millones de millones de años completar el cálculo. Esto se debe a que ambas claves se relacionan a través de números primos. Las dos se calculan a partir de un número muy grande (de centenares de dígitos) que es el producto de sólo dos números primos.
Si tenemos los números primos 47 y 59 es fácil calcular su producto: 2773. Pero, si nos dan el número 2773 y queremos saber qué dos números lo dan como producto, tenemos que probar con todos los números primos desde el dos hasta la raíz cuadrada de 2773. Son dieciséis divisiones en total. Si el número inicial tiene cuarenta dígitos, obtener los primos que lo forman a razón de un millón de divisiones por segundo podría tardar más de 60 mil años. Con números de cien o más dígitos, el tiempo necesario superaría largamente la edad del Universo.
Durante muchos años, la investigación sobre números primos se consideró la rama más pura de las matemáticas, algo que no tendría ninguna utilidad práctica. Pero todo llega y ahora vemos cómo la confidencialidad de nuestras comunicaciones y hasta la seguridad nacional descansan en los números primos.
Tomado de Diario Página 12 en http://www.pagina12.com.ar/diario/ultimas/index.html
Una clave
muy sencilla consiste en reemplazar cada letra del mensaje por otro
símbolo: a igual letra, igual símbolo. Es el método que, en la
imaginación de Edgar Allan Poe, usa el pirata Kidd en “El escarabajo de
oro”. El protagonista, un hombre llamado Legrand, encuentra en la playa
un pergamino con lo que parece ser una secuencia aleatoria de números y
símbolos. Legrand sospecha que el pergamino puede contener las
instrucciones para encontrar un tesoro y logra descifrar el mensaje.
Poe era muy aficionado a este tipo de claves y solía publicar
desafíos de este tipo para los lectores del Alexander’s Weekly
Messenger, una revista de Filadelfia. El relato en “El escarabajo de
oro” es casi un manual de instrucciones para resolver claves de
sustitución. Legrand comienza por contar cuántas veces aparece cada
símbolo y asociar el símbolo que más se repite (el número ocho) a la
letra más frecuente en el idioma inglés (la e). Confirma esta suposición
por el hecho de que el par 88 aparece cinco veces el mensaje y,
efectivamente, la letra “e” se duplica muchas veces en inglés (como en
feed, speed, agree, etc.). Luego analiza la distribución de los
símbolos, localiza la palabra the (la más frecuente en inglés) y, paso a
paso, termina por descifrar todo el mensaje.Sherlock Holmes emplea el mismo método para resolver una clave similar en “La aventura de los bailarines”. Aquí cada letra se reemplaza por la figura de un hombrecito bailando y a cada letra le corresponde una posición diferente. Como Legrand, Holmes asocia la letra “e” a la figura más repetida. Curiosamente, para Poe, el orden de las letras en inglés, según su frecuencia, es E, A, O, I, D, H, N, R, S, T... mientras que para Holmes es E, T, A, O, I, N, S, H, R, D y L.
Mucho más sencilla es la clave que el profesor Lidenbrock (en realidad, su sobrino) descifra en Viaje al centro de la Tierra: el autor del mensaje simplemente lo escribe al revés.
CLAVES DE DESPLAZAMIENTO
Otro tipo de clave consiste en reemplazar cada letra del mensaje por la que le sigue en el abecedario, una cantidad determinada de posiciones. Por ejemplo, reemplazando cada letra por la que está dos posiciones más allá. Entonces, la palabra PAGINA se convertiría en RCIKOC (la R está dos lugares después de la P; la C, dos lugares después de la A y así sucesivamente). Este sistema de encriptación se llama también “clave cesárea”, porque fue usada por Julio César.Estas claves “de desplazamiento” son muy fáciles de descifrar: una vez identificada una letra, quedan determinadas todas las demás. Además, para un alfabeto de veintisiete letras hay sólo veintiséis desplazamientos posibles y una computadora podría analizarlas a todas en segundos.
El método de desplazamiento se puede perfeccionar recurriendo a un número. Por ejemplo, 4239. Este número indica que la primera letra del mensaje se reemplaza por la que está cuatro lugares más allá en el abecedario. La segunda, por la que está dos lugares más allá. La tercera, por la que está tres lugares más allá y la cuarta, por la que está nueve lugares más allá. El ciclo se repite a partir de la quinta letra. Este sistema es más seguro porque una misma letra se reemplaza por una distinta según su posición en el texto y no sirve el análisis de frecuencia empleado por el personaje de Poe o por Sherlock Holmes. Lewis Carroll, el autor de Alicia en el País de las Maravillas, publicó una vez una tabla de doble entrada para aplicar rápidamente la clave de desplazamiento.
Durante la Segunda Guerra Mundial, el ejército alemán desarrolló una máquina encriptadora llamada Enigma, de gran complejidad y que producía mensajes secretos casi imposibles de descifrar. Para mayor seguridad, las claves se cambiaban varias veces al día. Un tipo de mensajes que preocupaba especialmente a los aliados eran los que informaban la posición de los submarinos alemanes que hundían los barcos que llevaban suministros a través del Atlántico. Fue gracias a los trabajos de Alan Turing que los ingleses lograron descubrir cómo funcionaba la máquina Enigma y descifrar los mensajes enemigos. Los alemanes estaban tan seguros de la inviolabilidad de sus mensajes que atribuyeron esto a la labor de espías.
El ejército de Estados Unidos, mientras tanto, desarrolló un lenguaje secreto basado en el idioma de los indios navajos. El idioma navajo no tenía forma escrita, por lo que había pocos registros de su estructura, fuera de Estados Unidos. El código usaba algunas palabras traducidas directamente del navajo, otras veces empleaba metáforas (por ejemplo, nombres de pájaros para aviones o de peces para barcos) y también incluía palabras armadas mediante fonética. Por ejemplo, el verbo belong (pertenecer) se armaba con las palabras navajas para bee (abeja) y long (largo).
Esta clave no empleaba sustitución de letras, no se basaba en un algoritmo matemático, ni necesitaba máquinas complejas para encriptar y descifrar. Cada regimiento, cada batallón, incluía un indio navajo responsable de las comunicaciones que traducía casi instantáneamente los mensajes transmitidos.
El código fue vital para el avance de las tropas norteamericanas en el Pacífico. La historia del código navajo fue llevada al cine en 2002 en la película Código de guerra (Windtalkers), con Nicolas Cage en el papel del oficial que debía acompañar al indio. Su misión era protegerlo pero, también, matarlo ante el riesgo de caer prisionero: el código era más valioso que la vida de un soldado. También se menciona el código navajo en “Anasazi”, uno de los episodios de los Expedientes X.
EL METODO RSA
Normalmente, la clave usada para encriptar un mensaje es la misma que se usa para desencriptarlo. Por lo tanto, los participantes de la comunicación deben acordarla previamente. En las novelas de espionaje vemos cómo se intercambian libros de claves en encuentros personales o se anuncian solapadamente en la radio o en avisos clasificados. En cualquier caso, que la clave tenga que “circular” en algún momento pone en riesgo la seguridad de la comunicación.Pero, en 1975, los matemáticos Ronald Rivest, Adi Shamir y Leonard Adleman crearon un sistema de encriptación completamente nuevo que asegura la confidencialidad gracias al uso de claves distintas para encriptar y desencriptar. El sistema se conoce como RSA por las iniciales de sus creadores.
Por ejemplo, supongamos que un banco necesita que sus clientes se comuniquen con una sucursal. Por supuesto, los clientes quieren que sus mensajes sean confidenciales, que nadie que no sea el banco pueda leerlos. Para eso, el banco dispone de dos claves. Una es pública, la conoce todo el mundo. El banco la puede anunciar en su publicidad, en su página web o comunicarla a sus clientes en el momento de abrir la cuenta. Esta clave la usan los clientes para encriptar sus mensajes. La otra es privada, sólo la conoce el banco y la usa para desencriptar los mensajes. Como las claves son distintas, eso asegura la confidencialidad. Aunque un mensaje sea interceptado por un tercero, que conoce la clave usada para encriptar (porque es pública), éste no podrá desencriptarlo porque no tiene la clave privada, que sólo la conoce el banco. A diferencia de los sistemas tradicionales, los participantes de la comunicación no necesitan acordar secretamente las claves. El sistema se compara a veces con un buzón en el que cualquiera puede meter un mensaje, pero sólo el que tiene la llave puede abrirlo y leer los mensajes que contiene.
Esta asimetría (claves distintas para encriptar y para desencriptar) es lo que garantiza el secreto. Sin embargo, el sistema es simétrico en otro sentido: un mensaje encriptado con la clave pública debe ser desencriptado con la clave privada. Y, viceversa, un mensaje encriptado con la clave privada debe ser desencriptado con la clave pública. Y esto tiene otra ventaja: si el cliente recibe un mensaje que, para leerlo, debe ser desencriptado con la clave pública, eso indica que fue encriptado con la clave privada. El mensaje no es secreto porque todos conocen la clave pública. Pero como la clave privada sólo la conoce el banco, eso garantiza el origen del mensaje. Si se desea garantizar el origen del mensaje y, además, su privacidad, se puede usar una doble encriptación.
El método RSA comienza transformando el mensaje en un número muy largo. Por ejemplo, se reemplaza la letra A por el número 01, la B por el 02 y así sucesivamente. Luego se hace la encriptación propiamente dicha mediante un par de operaciones matemáticas. Estas operaciones no son complejas en sí mismas pero, como involucran cientos de dígitos, son imposibles de realizar sin computadora.
Aunque la clave pública y la privada son distintas, eso no significa que sean cualesquiera. En realidad, las dos claves están directamente relacionadas y, conociendo la clave pública, es teóricamente posible calcular la privada. Teóricamente. En la práctica llevaría millones de millones de años completar el cálculo. Esto se debe a que ambas claves se relacionan a través de números primos. Las dos se calculan a partir de un número muy grande (de centenares de dígitos) que es el producto de sólo dos números primos.
Si tenemos los números primos 47 y 59 es fácil calcular su producto: 2773. Pero, si nos dan el número 2773 y queremos saber qué dos números lo dan como producto, tenemos que probar con todos los números primos desde el dos hasta la raíz cuadrada de 2773. Son dieciséis divisiones en total. Si el número inicial tiene cuarenta dígitos, obtener los primos que lo forman a razón de un millón de divisiones por segundo podría tardar más de 60 mil años. Con números de cien o más dígitos, el tiempo necesario superaría largamente la edad del Universo.
Durante muchos años, la investigación sobre números primos se consideró la rama más pura de las matemáticas, algo que no tendría ninguna utilidad práctica. Pero todo llega y ahora vemos cómo la confidencialidad de nuestras comunicaciones y hasta la seguridad nacional descansan en los números primos.
Tomado de Diario Página 12 en http://www.pagina12.com.ar/diario/ultimas/index.html
Aplicación de modelos matemáticos para buscar fugitivos y predecir ataques terroristas, propuesta de Colombiano candidato a Premio Nobel
La aplicación de modelos matemáticos en
la prevención de ataques terroristas o en la búsqueda de fugitivos
es posible a través de la denominada "Teoría de los juegos", explica el matemático Colombiano Guillermo Owen, quien asesora
al Departamento de Defensa de Estados Unidos en estas materias.
Owen, de 72 años y uno de los principales expertos mundiales en
esta ciencia matemática, ha viajado a Barcelona (Mayo 2011) para impartir unas
conferencias ante estudiantes de ingeniería de la Universidad
Politécnica de Cataluña, con los títulos "Ataques terroristas
patrocinados y represalias" y "Un modelo de búsqueda y captura del
fugitivo".
En ambos casos se trata de dos de las numerosas aplicaciones prácticas de la "Teoria de los juegos", un área que estudia las interacciones y los procesos de decisión y estrategias entre dos o mas individuos, y que se ha usado también para efectuar análisis en el campo de la estrategia militar, la economía, la política, la biología o la informática.
Guillermo Owen, que se doctoró en Princeton (EEUU) y es profesor
distinguido de Matemáticas Aplicadas en la Escuela Naval de
Monterrey, en California, señala que en la búsqueda de un fugitivo
se pueden aplicar el denominado "juego del escondite", por el que se
estudia las características de los sitios donde se puede ocultar y
las estrategias óptimas tanto del fugitivo como del buscador.
Owen se muestra reservado al ser preguntado sobre la efectividad
de estos "juegos" matemáticos en casos reales de localización de
personas y se limita a decir: "hemos estado ayudando en la búsqueda
de algunas personas y hemos tenido algunos éxitos".
"En cuanto a los actos de terrorismo, buscamos no tanto predecir
los ataques terroristas sino que nos interesa la relación que pueda
haber entre un grupo terrorista y un Estado que le pueda estar
ayudando o 'Estado patrocinador', que es como lo llamamos", indica
el matemático colombiano.
En este sentido, y en función de la relación entre estos dos
'jugadores', "vemos qué puede hacer el sujeto de los ataques o
'Estado víctima" contra el grupo terrorista y el Estado que lo está
patrocinando", añade Owen.
Este experto en la "Teoría de los juegos", sobre la que ha
escrito varias obras de referencia, efectúa junto a otros
especialistas en la materia análisis para el Departamento de Defensa
norteamericano, "unos estudios que son bastante abstractos, pero que
les son útiles", asegura Guillermo Owen.
El matemático explica que en la "Teoría de los juegos" se
distinguen dos grandes grupos, los "juegos cooperativos", donde se
estudian las coaliciones y las negociaciones que pueden entablar
jugadores del mismo grupo, y los "juegos no cooperativos", donde se
busca qué puede hacer cada jugador para tener un rendimiento óptimo
en función de las posibles estrategias de los otros jugadores.
En la vida diaria, las personas también toman decisiones basándose en unas estrategias, aunque estas decisiones no siempre son las mejores porque "no siempre nuestras acciones son totalmente racionales".
En este sentido, Owen advierte que "se puede recurrir a las matemáticas para analizar cuáles son las mejores decisiones, pero eso no quiere decir que la persona las vaya a tomar", mientras resalta que "a veces tomar una decisión errónea puede llevar a un éxito o un premio inesperado".
El matemático añade, a modo de explicación, que "el resultado de una decisión no sólo depende de nosotros, sino de otros factores que desconocemos o que considerábamos muy poco probables".
Así, Cristóbal Colón erró en su idea de encontrar una ruta más corta hacia la Indias navegando hacia Occidente porque "resultó que había algo, la naturaleza, que cambió sus planes, pero lo que hubiera sido un mal resultado, se convirtió en un gran resultado".
Del mismo modo, en el campo de la economía, donde se ha empleado
la "Teoría de los juegos" para intentar prever los comportamientos
de los agentes económicos "siempre hay imprevistos y la gente a
veces puede moverse por el pánico, y con pánico la gente se comporta
de manera muy irracional".
La "Teoría de los juegos" eclosionó en la década de los cuarenta
del siglo pasado, en la época de la Segunda Guerra Mundial y la
posterior "Guerra Fría", con las aportaciones de matemáticos como
John von Neumann, Oskar Morgenstern o John Nash, quien recibió el
Premio Nobel de Economía de 1994 y cuya vida se llevó al cine en la
película "Una mente maravillosa".
Redacción de Hèctor Mariñosa
Barcelona, 30 abr (Agencia de Noticias EFE)
Desarrollan un modelo matemático para predecir el crecimiento de los tumores
Dos profesoras del departamento de Informática y Análisis Numérico de
la Universidad de Córdoba (UCO), Carmen Calzada y Mercedes Marín, han
desarrollado, con la colaboración de Enrique Fernández-Cara y Gema
Camacho, de la Universidad de Sevilla (US), un método de resolución de
un modelo matemático capaz de predecir la evolución de un tumor en la
fase avascular -cuando los únicos nutrientes que llegan a las células
tumorales vienen de los tejidos adyacentes-, y en la fase vascularizada
-cuando ya se ha creado una red de capilares que llegan al tumor
aportándole gran cantidad de nutrientes y haciendo que crezca
rápidamente.
En la figura se puede observar la similitud con el desarrollo real de un tumor, como se muestra en la parte inferior derecha de la misma. Imagen: UCO |
Este equipo de investigación ha resuelto el modelo
empleando técnicas numéricas basadas en métodos de conjuntos de nivel y
de dominios ficticios, que se utilizan con éxito desde hace tiempo en
otros problemas con origen distinto, como por ejemplo la sedimentación
de partículas en un fluido.
Estos resultados, publicados en la revista Journal of Computational Physics,
son un paso más en la lucha por la supervivencia de los enfermos con
cáncer. Aunque el estudio está aún en fase preliminar, el equipo trabaja
ya en la incorporación al modelo de las variables y relaciones que
simulen la administración de una terapia.
El objetivo es plantear
y resolver un problema de control óptimo que permita simular diferentes
protocolos de administración según el tipo de tumor, con el objetivo de
ayudar en la toma de decisiones.
Los modelos matemáticos y las
simulaciones por ordenador se utilizan cada vez más en Medicina para
describir y comprender el funcionamiento de los seres vivos y sus
enfermedades. Así, a la experimentación in vitro, en laboratorio, e in
vivo, con seres vivos, se ha unido, desde hace un tiempo, la llamada
experimentación in silico, realizada por ordenador.
Fuente: Servicio de Información y Noticias Científicas (SINC) y Universidad de Córdoba (UCO)
Pasos matemáticos cruciales para el ensayo de cirugías con copias virtuales de cada paciente
John Jairo Escobar Machadolunes, marzo 21, 2011Cálculo Integral, Matemáticas Aplicadas, Matemáticas y Computación
1 comentario
Accidentalmente, un cirujano mata a un paciente, deshace el error y comienza de nuevo. ¿Pueden los matemáticos hacer realidad esa idea de la ciencia-ficción? Se aproxima con rapidez el día en que un cirujano pueda practicar sobre el "doble digital" de su paciente (una copia virtual del cuerpo de éste) antes de realizar la operación quirúrgica real, según el matemático Joseph Teran Ph.D. en 2005 en Stanford University. y actualmente docente investigador de la UCLA: University of California de Los Angeles está ayudando a hacer viable una tecnología para la cirugía virtual.
Las ventajas de esta nueva tecnología salvarán vidas. "El cirujano puede permitirse cometer errores sin consecuencias cuando utiliza un simulador, y aprender de sus errores", explica Teran. "Si comete errores, puede deshacerlos como lo hace cualquiera que se equivoca al teclear una palabra en un documento usando un procesador de textos. Volver a empezar es un gran beneficio de la simulación. La simulación quirúrgica está llegando, no hay ninguna duda sobre esto. Es una alternativa más barata frente a los cadáveres y una alternativa más segura para los pacientes". Los pacientes pueden ser escaneados y entonces es posible generar un doble digital tridimensional. Es una copia virtual del cuerpo del paciente, incluyendo sus órganos internos. El cirujano hace primero la operación quirúrgica en el paciente virtual. Con un simulador, un cirujano puede practicar un procedimiento decenas o cientos de veces. Cuando está clara la mejor forma de realizar la cirugía, entonces el paciente acudirá al hospital para ser operado. Ahora, ya puede hacerse un doble corporal tridimensional digital de cualquier persona, pero actualmente eso requiere la labor de 20 especialistas entre seis y nueve meses. En un futuro cercano, un único técnico podrá hacerlo en cuestión de minutos. La disponibilidad fácil de esta tecnología permitirá a los cirujanos cometer menos errores sobre los pacientes reales. El único factor limitante es la complejidad de la geometría involucrada, pero Teran y sus colaboradores están trabajando en eso. La tecnología será especialmente útil para nuevos tipos de cirugías, que por su carácter novedoso no hayan podido ser ensayadas tanto como sería deseable.
Joseph M. Terán Docente UCLA |
Hacer realidad la cirugía virtual requerirá resolver ecuaciones matemáticas, operaciones de cálculo multivariado, así como progresar en la geometría computacional y en la informática. Siendo un experto en matemáticas aplicadas, Teran trabaja en estos campos; él desarrolla algoritmos para resolver las ecuaciones. Los adelantos hechos por Teran y otros científicos en la geometría computacional, ecuaciones y la computación a gran escala están acelerando la viabilidad práctica de la cirugía virtual.
Resuelto el problema de Nash
Publicado por Instituto de Ciencias Matemáticas el 14 marzo, 2011
Imagen de Película: Una mente brillante |
El famoso matemático John Nash, cuya vida ha inspirado la película Una mente maravillosa,
enunció a mediados de los años sesenta –durante uno de los periodos en
que su brillantez matemática dejaba en segundo plano a su enfermedad
mental– una conjetura relacionada con un concepto que los matemáticos
llaman ‘singularidad’. Ahora, dos jóvenes matemáticos españoles, Javier
Fernández de Bobadilla y María Pe Pereira, la han resuelto. Su trabajo
está siendo toda una sorpresa para los especialistas en el problema de
Nash. Fernández de Bobadilla y Pe Pereira han demostrado la conjetura
con un abordaje muy novedoso y en sólo tres años de trabajo.
John Nash |
El problema de Nash es de matemáticas ‘puras’, es decir, no tiene
aplicaciones fuera de la propia matemática. Al menos, no a corto plazo:
“Ahora entendemos algo importante que antes no entendíamos, y eso
acabará teniendo aplicaciones”, y “Un matemático lanza una conjetura
cuando intuye que algo es cierto pero no lo puede demostrar; el esfuerzo
por demostrar las conjeturas hace avanzar las matemáticas, y las
matemáticas no son sino la forma más rigurosa de pensamiento”, dice Fernández de Bobadilla.
Como ocurre con muchos problemas matemáticos, los resultados han llegado tras tres años de intenso trabajo.
La teoría de singularidades es un tema transversal donde convergen técnicas de muchas áreas de las matemáticas, como la geometría algebraica, la topología, la geometría diferencial, el análisis.
METERSE EN UNA ‘SINGULARIDAD’
¿Qué fue lo que Nash conjeturó a principios de los
años sesenta pero no pudo demostrar? La intuición de este matemático,
premio Nobel de Economía en 1994 y que a sus 82 años sigue en activo en
la Universidad de Princeton, tiene que ver con la comprensión de las
‘singularidades’, un concepto matemático que sí se percibe en el mundo
físico. Los fenómenos en que aparecen cambios instantáneos de
comportamiento tienen singularidades: la formación de tornados en la
atmósfera, cuando un metal se rompe al ser sometido a temperaturas muy
altas o cuando el espacio-tiempo se curva tanto que se forma un agujero
negro.
Pero el tipo de singularidades de las que trata el
problema de Nash proceden de la geometría y se visualizan con un ejemplo
más modesto: si se retuerce completamente un cilindro, el punto entre
los dos conos resultantes es una singularidad. Y es que todas las
singularidades se pueden imaginar a partir de un objeto liso en que una
parte se comprime dando lugar a la singularidad –en el ejemplo anterior,
una de las circunferencias que rodea al cilindro se estaría
comprimiendo en el vértice de los conos-. Este conjunto que se comprime o
colapsa es lo que los matemáticos llaman lugar excepcional.
La pregunta es: ¿Qué puede llegar a saberse de esa
singularidad? ¿Sería posible, por ejemplo, hacer correr la película
marcha atrás y deducir cuál es el lugar excepcional que ha sido comprimido para generarla? Los matemáticos, y en concreto los llamados singularistas, investigan intensamente en estas cuestiones desde la primera mitad del siglo XX.
Así, los singularistas han aprendido, por ejemplo, a
extraer información a partir de las posibles trayectorias de las
partículas que atraviesan una singularidad –o, lo que es lo mismo, de
los posibles recorridos de una canica microscópica rodando por la pared
interna del cilindro retorcido–. Estas trayectorias se agrupan en
familias según su comportamiento.
Este resultado es un magnífico exponente de este hecho.
La idea de Nash fue que existe una determinada relación entre la forma del lugar excepcional y las familias de trayectorias que atraviesan la singularidad. Afirmó que en objetos de dos dimensiones, es decir, en superficies, hay una correspondencia perfecta entre la forma del lugar excepcional y las familias de trayectorias. Nash también sugirió estudiar esta relación en dimensiones superiores.
Shihoko Ishii, del Instituto Tecnológico de Tokio, y János Kollár, de la Universidad de Princeton (EEUU), demostraron en su artículo The Nash problem on arc families of singularities. Duke Math. J. 120, no.3, (2003), 601-620, que la relación descrita por Nash no se da en singularidades de objetos de cuatro o más dimensiones.
Javier Fernández de Bobadilla, natural de Granada, es un joven matemático de 38 años con una excepcional trayectoria científica. Investigador Científico del Instituto de Ciencias Matemáticas e Investigador Científico del CSIC. En 2009 consiguió uno de los prestigiosos proyectos (Starting Grants) para jóvenes del European Research Council, titulado Topological, Geometric and Analytical Study of Singularities. “Lo importante en este caso ha sido dar con la idea”, explica “Hemos resuelto el problema de Nash con técnicas
sorprendentemente sencillas, casi elementales, aunque por supuesto nos
basamos en desarrollos previos de otros investigadores”.
María Pe Pereira, burgalesa de nacimiento, es licenciada en Matemáticas por la Universidad Complutense de Madrid en 2005. Actualmente, becaria en el Instituto Jussieu de París. Anteriormente había participado en la Olimpiada Internacional de Matemáticas en Taiwan en 1998 representando a España. Actualmente está realizando una estancia de investigación en París financiada por una beca de la Fundación Caja Madrid. “Desde el punto de vista matemático es un problema muy bonito, con un
enunciado sencillo, y que además ha podido ser entendido con técnicas
relativamente elementales, lo que es una suerte para un matemático”,
dice María Pe Pereira, a sus 30 años.
Tomado de: MATEMATICALIA: revista digital de divulgación matemática
La matemática al servicio de otras ciencias y en la vida diaria
En este artículo vemos que acciones sencillas como la patada a un balón y rellenar un sudoku, hasta la predicción del clima, detección de tumores, y entender la manera como se mueve la información de internet a través de paquetes son explicados en un lenguaje sencillo, tarea que desde hace unos años viene llevando a cabo el programa Momentos Matemáticos promoviendo asi la apreciación y el entendimiento del papel que juegan las matemáticas en la ciencia, la tecnología, la naturaleza y la cultura humana.