English French German Spain Italian Dutch Russian Portuguese Japanese Korean Arabic Chinese Simplified

Reproducen en el laboratorio el comportamiento estadístico de los terremotos

Investigadores de la Universidad de Barcelona publican en Physical Review Letters distintos experimentos en el laboratorio con materiales heterogéneos para encontrar modelos que describan el comportamiento de los terremotos.


La fractura mecánica de los materiales es un fenómeno complejo asociado a muchos accidentes y desastres naturales, que van desde la ruptura de pequeños dispositivos hasta los terremotos.
En un estudio liderado por investigadores de la Universidad de Barcelona, y publicado en la revista Physical Review Letters, se ha utilizado un material que, sometido a compresión, permite reproducir las cuatro principales leyes estadísticas de recurrencia sísmica: la ley de Gutenberg-Richter, la ley de Omori, la distribución de pausas entre sismos y la ley de productividad.
El trabajo ha sido dirigido por el investigador Eduard Vives, de la Facultad de Física de la Universidad de Barcelona, y en él han participado investigadores del Centro de Investigación Matemática (CERCA - Generalitat de Catalunya), de la Universidad de Cambridge, la Universidad de Viena y el Instituto Potosino de Investigación Científica y Tecnológica (México).
"El experimento simula una falla nueva que empezara desde cero"
El material, que se ha estudiado mediante un dispositivo desarrollado por el taller mecánico de los Centros Científicos y Tecnológicos de la UB, es un tipo de vidrio altamente poroso (40 % de porosidad), diseñado para aplicaciones industriales, denominado Vycor®. La muestra, de una medida de 5 milímetros, se introduce entre dos placas y se comprime verticalmente aplicando un peso que aumenta con el tiempo de manera lineal. En las placas de compresión se sitúan unos sensores de emisión acústica, que serían el equivalente a los sismógrafos, que miden ondas acústicas ultrasonoras y que permiten detectar las fracturas en la muestra.
"El experimento que hemos llevado a cabo simula una falla nueva que empezara desde cero", explica el investigador de la UB Eduard Vives. "De este modo –continúa–, hemos podido observar la evolución temporal que tendría, que en el laboratorio es de unas horas y en los terremotos equivaldría a miles de años".
En sismología se estudian los efectos estadísticos espaciales a partir de datos de zonas con mucha actividad sísmica, como por ejemplo California, y de poca actividad. Según el investigador, "esta simetría en el espacio y el tiempo nos lleva a pensar que es posible que los terremotos se comporten siguiendo algún tipo de criticidad autoorganizada –tal y como apuntan algunas teorías–, y si se pudiera demostrar, sería un gran avance por la posibilidad de aplicar teorías ya existentes para este tipo de sistemas. 
La respuesta del material ha mostrado que sigue las cuatro leyes estadísticas principales de la sismología
Anteriormente, distintos trabajos han intentado establecer comparaciones entre terremotos y fracturas de materiales en el laboratorio, utilizando principalmente rocas naturales, pero los resultados o bien han sido incompletos o solamente han reproducido alguna de las propiedades de los terremotos. "Este material, en cambio, permite hacer experimentos controlando distintos parámetros, como la fuerza o la velocidad", concluye Vives. 
Cuatro leyes estadísticas de la sismología 
La respuesta del material ha mostrado que sigue las cuatro leyes estadísticas principales de la sismología. Por una parte, la energía detectada mediante las emisiones acústicas varía de acuerdo con la ley de Gutenberg-Richter, que relaciona el número de terremotos en función de la energía radiada y que decae según una ley de potencias. 
Para tener una idea de la diferencia de escala, la energía emitida por un gran terremoto (de magnitud 8) es equivalente a 1.000 bombas de Hiroshima, mientras que la máxima energía medida por la fractura del material en el laboratorio equivale a la energía de fisión de un único átomo de uranio. La diferencia de magnitud es equivalente, aproximadamente, a un factor de 1027.  
En otro experimento con el mismo material se ha estudiado el número de réplicas después de que se produzca una fractura mayor y se ha visto que decae en el tiempo de acuerdo con la llamada ley de Omori para terremotos. "La diferencia es que el tiempo máximo de réplicas en nuestro caso es de unas cuantas horas, mientras que en los seísmos dura más de cien años"», apunta el investigador de la UB. 
Una tercera ley estadística es la de distribución de pausas entre seísmos (waiting times), que relaciona el tiempo entre dos eventos consecutivos. En este caso, se han comparado los resultados obtenidos en el laboratorio con los de la serie de terremotos de California, una de las más completas, y "teniendo en cuenta la diferencia de escalas, la concordancia es muy alta", afirma Vives.
Finalmente, también se ha podido comprobar la similitud con la ley de productividad, que muestra como el número de réplicas después de una fractura mayor crece en función de la energía de este evento principal.
Tomado de Sinc (Servicio de Información y Noticias Científicas) Ver artículo original acá



Comparte este artículo en tus redes sociales:

No hay comentarios:

Videoteca

Videos Discovery

Videos Discovery
Discovery en la Escuela

Aula virtual Cálculo Integral

Aula virtual Cálculo Integral
Sesiones en Wiziq

Aula Virtual Estadística

Aula Virtual Estadística
Sesiones en Wiziq

Zona Wolfram Alpha

Zona Wolfram Alpha
ir a Herramientas
Este sitio inició el día 1 de abril de 2010. Estas son las estadísticas

   Publicaciones
   Comentarios
 Días online

Vistas de página en total