Leonhard Euler inventó una nueva rama de las matemáticas cuando demostró en 1735 que no se podían atravesar los siete puentes de Königsberg en un solo viaje sin repetir ningún puente.
En 1847, Johann Benedict Listing acuñó el término ”topología” para describir este nuevo campo. Durante los siguientes 150 años los matemáticos trabajaron en topología porque suponía un gran desafío intelectual, sin ninguna expectativa de que fuera a ser útil. Después de todo, en la vida real, la forma es muy importante (nadie confunde una taza de café con un dónut). ¿A quién le preocupan los agujeros de 5 dimensiones en un espacio de 11 dimensiones? Incluso ramas de la topología en apariencia muy prácticas, como la teoría de nudos, que tuvo su origen en los primeros intentos para comprender la estructura de los átomos, se pensó que eran inútiles durante la mayor parte de los XIX y XX.
Pero en la década de 1990, las aplicaciones prácticas de la topología comenzaron a aparecer. Lentamente al principio, pero ganando impulso hasta que ahora parece que hay pocas áreas de la ciencia en las que la topología no se utilice. Los biólogos utilizan la teoría de nudos para comprender la estructura del ADN. Los ingenieros en robótica utilizan la teoría para planificar las trayectores de los robots móviles. Las bandas de Möbius se utilizan para obtener cintas transportadoras más eficientes.
Los médicos utilizan la teoría de la homología para hacer escaneos cerebrales y los cosmólogos las usan para comprender cómo se forman las galaxias. Las empresas de telefonía móvil utilizan la topología para identificar los lugares donde no hay cobertura de la red. E incluso en computación cuántica se están utilizando hilos trenzados para construir ordenadores cuánticos robustos. La topología permite usar los mismos teoremas para resolver problemas muy diversos, desde el ADN a los sistemas de GPS (Sistemas de Posicionamiento Global). ¿Hay alguna aplicación práctica donde no se utilice la topología?
No hay comentarios:
Publicar un comentario